Abstract

A new dual spacecraft configuration comprising of two spacecraft halves judiciously connected through extremely short tethers is proposed. The simple tethered configuration induces stabilizing torques when subjected to attitude disturbances, thus ensuring 3-d pointing stability of both the satellite platforms. The enhanced system performance obtained using tethers enables a much greater flexibility in the choice of satellite mass distribution. Three particular TSS models involving parallel tethers, a `parachute-like' conical tether layout as well as a single tether connection have been considered. A detailed numerical response simulation shows that these modes of tether attachments bring about a radical change in the satellite attitude behavior from the nominal one involving relatively large librational amplitudes or instability to a virtually fixed desired orientation. Of these, the parachute configuration appears to be superior. The passive nature of the proposed mechanisms using tether lengths on the order of merely a couple of meters needed for small and medium size systems makes the concept particularly attractive for future space missions. Finally, it is felt that the proposed tethered dual satellite systems may offer a simple answer to three-axis attitude control problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.