Abstract

The mechanism of action of tetanus toxin was characterized in the electromotor system of Torpedo marmorata either at peripheral and central nervous system. The consecutive steps of the intoxication pathway were observed: (i) [125I]tetanus toxin specifically bound to neuronal plasma membranes isolated both from electric organ and electric lobe of Torpedo, exhibiting one and two binding sites respectively; (ii) [125I]tetanus toxin was internalized into nerve terminals and retrogradely transported to the electric lobe after its injection in the electric organ; (iii) finally, intracellular effect of tetanus toxin was studied either at electric organ and electric lobe membrane fractions. In both preparations tetanus toxin cleaved synaptobrevin, as detected by immunoblotting methods. In conclusion, our findings exhibit the presence of two different populations of acceptors for tetanus toxin in central and peripheral nervous system and show that synaptobrevin cleavage may account for intracellular toxicity in Torpedo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.