Abstract

Field potentials of dentate granule cells in response to stimulation of the perforant path have been studied before and after injecting tetanus toxin (200 mouse ld 50; or phosphate-buffered saline in controls) into the hilus of the dentate gyrus of rats under urethane anaesthesia. Within l h of toxin injection, the population spike, but not the slope of the excitatory postsynaptic potential, had increased markedly in amplitude and double or treble population spikes appeared in response to perforant path stimulation. Both paired pulse inhibition (15-ms interval between conditioning and test stimuli) and commissural inhibition (10-ms interval) were substantially reduced by the toxin. Neither multiple spikes nor the reduction in inhibition were seen in controls. Apparent inhibition of the excitatory postsynaptic potential, seen with paired stimuli to the perforant path, was not affected by the toxin. At later times after the injections, a progressive increase in the size of the spikes was seen in the controls while in the toxin animals there was often a secondary decrease in size. It is concluded that tetanus toxin can block both feed-back and feed-forward inhibitory components acting on dentate granule cells. The results are discussed with respect to the role of inhibitory processes in the control of epileptogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.