Abstract

Tetanus and botulinum neurotoxins, produced by anaerobic bacteria of the genus Clostridium, are the most toxic proteins known and are solely responsible for the pathogenesis of tetanus and botulism. They are metallo-proteases that enter nerve terminals and cleave proteins of the neuroexocytosis apparatus causing a persistent, but reversible, inhibition of neurotransmitter release. Botulinum neurotoxins are used in the therapy of many human syndromes caused by hyperactive nerve terminals. Snake presynaptic PLA2 neurotoxins block nerve terminals by binding to the nerve membrane and catalyzing phospholipid hydrolysis with production of lysophospholipids and fatty acids. These compounds change the membrane conformation causing enhanced fusion of synaptic vesicle via hemifusion intermediate with release of neurotransmitter and, at the same time, inhibition of vesicle fission and recycling. It is possible to envisage clinical applications of the lysophospholipid/fatty acid mixture to inhibit hyperactive superficial nerve terminals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call