Abstract

The role of cancer stem cells in metastasis, recurrence, and resistance to conventional therapies is significant. Addressing these cells could potentially decrease cancer reoccurrences and mortality rates. TET1, a crucial gene involved in stem cell self-renewal and potency, may also play a part in cancer stem cells, which warrants further research.To explore the role of TET1 in cancer stem cells, we conducted experiments involving loss and gain. We then analyzed factors such as migration, invasion, cell cycle, cell viability, mammosphere formation, and the CD44+/CD24- subpopulation of cancer cells. We also investigate the influence of TET1 on CCNB1, CDK1, and OCT4.Our study reveals that TET1 can regulate the phenotype of cancer stem cells via OCT4. Additionally, it can control the cell cycle by increasing CDK1 and CCNB1 levels. These findings suggest that targeting DNA methylation and TET1 could be an effective strategy to overcome obstacles posed by Cancer stem cells.Our research also indicates that TET1 can influence the phenotype of cancer stem cells and the cell cycle of breast cancer cells potentially through OCT4, CCNB1, and CDK1. This highlights the importance of TET1 in breast cancer cases and suggests a potential therapeutic approach through DNA methylation and modulation of TET1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call