Abstract

Bisphenol A (BPA), an important environmental pollutant, is known to damage reproductive development. However, the underlying epigenetic mechanism in Leydig cells during BPA exposure has not been explored in detail. In this study, TM3 Leydig cells were treated with BPA (0, 20, 40 and 80 μM) for 72 h. The differentially expressed TET1 cell model was constructed to explore the mechanism of BPA-induced cytotoxicity. Results showed that BPA exposure significantly inhibited cell viability and increased apoptosis of TM3 Leydig cells. Meanwhile, the mRNA of TET1, Cav3.2 and Cav3.3 decreased significantly with the increase of BPA exposure. Importantly, TET1 significantly promoted proliferation of TM3 Leydig cells and inhibited apoptosis. Differentially expressed TET1 significantly affected BPA-induced toxicity in TM3 Leydig cells. Notably, TET1 elevated the mRNA levels of Cav3.2 and Cav3.3. MeDIP and hMeDIP confirmed that TET1 regulated the expression of Cav3.3 through DNA hydroxymethylation. Our study firstly presented that TET1 participated in BPA-induced toxicity in TM3 Leydig cells through regulating Cav3.3 hydroxymethylation modification. These findings suggest that TET1 acts as a potential epigenetic marker for reproductive toxicity induced by BPA exposure and may provide a new direction for the research on male reproductive damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.