Abstract

Ten-eleven translocation protein 1 (Tet1) is associated with the regulation of depression-like behaviour in mice. However, the mechanism by which Tet1 affects neurogenesis in mice to regulate depression-like behaviours remains unclear. In this study, the chronic social defeat stress (CSDS) paradigm was constructed by overexpressing Tet1 protein in the mouse hippocampus, and 5-ethynyl-2′-deoxyuridine (EdU, 50 mg/kg) was injected on the seventh day to explore the mechanism of the regulation of the Tet1/Delta-like protein 3 (DLL3)/Notch1 protein pathway in mice hippocampal neurogenesis and its influence on depression-like behaviour. Following CSDS, the expression level of Tet1 decreased significantly. Moreover, due to the downregulation of Tet1 protein, the maintenance of the DNA methylation and demethylation balance was affected, resulting in a significant increase in the methylation levels of Notch1 and DLL3 and a significant decrease in the protein expression levels of DLL3, Notch1, and brain-derived neurotrophic factor (BDNF). At the same time, the proliferation and differentiation of neurones were affected, which was related to a significant decrease in the number of EdU+, doublecortin (DCX)+, and Ki67+ cells in the hippocampus of the CSDS model mice. When the Tet1 protein was overexpressed in the mouse hippocampus, DLL3 and Notch1 protein expression levels were upregulated, promoting hippocampal neurogenesis and alleviating depression-like behaviour in mice. These findings suggest that regulation of the hippocampal Tet1/DLL3/Notch1 protein pathway to influence neurogenesis may be a therapeutic strategy for depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call