Abstract

Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as an important human viral pathogen, causing congenital malformation including microcephaly among infants born to mothers infected with the virus during pregnancy. Phylogenetic analysis suggested that ZIKV can be classified into African and Asian lineages. In this study, we have developed a stable plasmid-based reverse genetic system for robust production of both ZIKV prototype African-lineage MR766 and clinical Asian-lineage FSS13025 strains using a tetracycline (Tet)-controlled gene expression vector. Transcription of the full-length ZIKV RNA is under the control of the Tet-responsive Ptight promoter at the 5′ end and an antigenomic ribozyme of hepatitis delta virus at the 3′ end. The transcription of infectious ZIKV RNA genome was efficiently induced by doxycycline. This novel ZIKV reverse genetics system will be valuable for the study of molecular viral pathogenesis of ZIKV and the development of new vaccines against ZIKV infection.

Highlights

  • Zika virus (ZIKV), an arthropod-borne virus, belongs to the Flavivirus genus of the Flaviviridae family, which includes several other important human pathogens such as yellow fever virus (YFV), dengue virus (DENV), and West Nile virus (WNV)

  • Genetic instability of Flavivirus cDNA in bacteria is a common problem encountered during the course of developing reverse genetics for certain members of the Flaviviridae family

  • The full-length cDNA clones of different ZIKV strains have been constructed recently by others using a T7/SP6 transcription vector or a mammalian expression vector that requires the insertion of intron sequence into the NS1 or NS5 gene in order to obtain the infectious cDNA clones [16,18,19,20,21]

Read more

Summary

Introduction

Zika virus (ZIKV), an arthropod-borne virus, belongs to the Flavivirus genus of the Flaviviridae family, which includes several other important human pathogens such as yellow fever virus (YFV), dengue virus (DENV), and West Nile virus (WNV). ZIKV was first discovered in the Zika forest area of Uganda in 1947 [1]. In recent years, it has emerged as an important human viral pathogen, causing several major epidemics in Yap Island and Micronesia, French Polynesia, and South America [2]. In contrast to other mosquito-borne flaviviruses, ZIKV can cause persistent infection in humans and primates [5,6] and can be transmitted sexually [7,8,9]. There are no antiviral drugs or vaccines for the control of ZIKV infection

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.