Abstract

Abstract TET enzymes are dioxygenases that promote DNA demethylation by oxidizing the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here we report a close correspondence between 5hmC-marked regions, chromatin accessibility and enhancer activity in B cells, and a strong enrichment for consensus binding motifs for basic region-leucine zipper (bZIP) transcription factors at TET-responsive genomic regions. Functionally, Tet2 and Tet3 regulate class switch recombination (CSR) in murine B cells by enhancing expression of Aicda, encoding the cytidine deaminase AID essential for CSR. TET enzymes deposit 5hmC, demethylate and maintain chromatin accessibility at two TET-responsive elements, TetE1 and TetE2, located within a superenhancer in the Aicda locus. Our data identify BATF as a key bZIP transcription factor involved in TET-dependent Aicda expression. 5hmC is not deposited at TetE1 in activated Batf-deficient B cells, indicating that BATF facilitates TET recruitment to this Aicda enhancer. Our study emphasizes the importance of TET enzymes for bolstering AID expression, and highlight 5hmC as an epigenetic mark that captures enhancer dynamics during cell activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call