Abstract

<p>The scientific community is increasingly focused on the study of past climate analogues to better comprehend future implications of global warming on marine ecosystem and biogeochemical cycles. Through an integrated calcareous plankton and geochemical approach, we examined the Terche and Madeago (NE Italy) Tethyan sections, that encompass the hyperthermal Eocene Thermal Maximum 2 (ETM2, ~54 Ma). The ETM2 shares similarities with the current climate context such as global warming, carbon cycle perturbations, high <em>p</em>CO<sub>2</sub> and ocean acidification, thus representing a key event in which investigate links between climate and biotic changes.</p><p>Our planktic foraminiferal and calcareous nannofossil records show significant, though transient, changes in both the sections across this event. Our record of multiple dissolution proxies from both the sections ensures that dissolution did not affect calcareous plankton assemblages. Planktic foraminifera exhibit a marked increase in warm index surface-dweller <em>Acarinina</em> paralleled by a decline in abundance of the deeper-dweller chiloguembelinids and subbotinids. This implies that the ETM2 warming impacted the entire upper water column. Both chiloguembelinids and subbotinids, recognized as eutrophic and colder taxa, may have suffered, beside warming, of reduced food supply at the thermocline due to the increased surface-water remineralization of organic matter as induced by the significant warmth. Increase of Cretaceous calcareous nannofossils testifies reworking related to enhanced hydrological cycle that also generated input of nutrients from land. Surface water eutrophication during the ETM2 was inferred by rise in calcareous nannofossil eutrophic indices. This group proved to be more sensitive to the nutrient supply rather than warming. The ETM2 consequence on marine calcifiers test-size were not previously explored. We provide here new evidence of a striking test size reduction in planktic foraminiferal assemblages (up to 40%) during the ETM2 that involved both the surface and deeper-dweller taxa that is particularly marked at Madeago. Although loss of symbionts (bleaching) is known to affect test calcification, it cannot represent a likely cause in the studied case as both symbiotic and asymbiotic planktic foraminifera were affected at the same scale across the ETM2. The increased abundance of small placoliths <em>Toweius</em> and <em>Ericsonia</em> indicates that size reduction also impacted nannofossils, though to a lesser degree.</p><p>We collected Hg (ppb), TOC (wt%) and Hg/TOC (ppb/wt%) data throughout our sections to test whether the reduction in size was related to environmental stressors not commonly linked to the ETM2. An increase in Hg was indeed detected in both sections at the base of the ETM2 and not corresponding to the intervals of reworking. Coeval submarine igneous events in this area might have introduced biolimiting metals thus involving the calcareous plankton productivity and possibly affecting test sizes. We hypothesize that the striking plankton dwarfism here recorded across the ETM2 is the result of the combined effect of paleoenvironmental perturbations induced by this event and increase in biolimiting metals. Our study alerts on possible consequences related to intense warming as associated to igneous events. Further data from different locations are needed to evaluate the geographic extension of impact on test-size variations in calcareous plankton assemblages.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.