Abstract
Strengthening steel structures using carbon fiber reinforced polymer (CFRP) materials has attracted much attention in recent years owing to their potential for fatigue crack repair and their convenience in construction. However, little is known about the efficiency of this strengthening method when applied to steel plates at different crack propagation stages. An experimental study was carried out on notched steel plates strengthened using CFRP laminates. 20 specimens were tested to evaluate the fatigue performance of the strengthened steel plates with emphasis on various degrees of initial damage, simulated by different lengths of slots, including 2%, 10%, 20%, 30% and 40% of the plate width. The effects of the retrofitted configuration and CFRP stiffness were also investigated. The "beach marking" technique and crack propagation gauges were adopted to monitor the fatigue crack propagation. The experimental results were very encouraging, demonstrating that the CFRP patches could effectively slow crack growth and extend fatigue life, regardless of the initial damage levels. More effective strengthening was found by using ultra-high modulus CFRP laminates, covering the initial cracks with CFRP and repairing at an earlier stage (i.e. smaller damage level).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.