Abstract

Two-Body Dirac equations of constraint dynamics provide a covariant framework to investigate the problem of highly relativistic quarks in meson bound states. This formalism eliminates automatically the problems of relative time and energy, leading to a covariant three dimensional formalism with the same number of degrees of freedom as appears in the corresponding nonrelativistic problem. It provides bound state wave equations with the simplicity of the nonrelativistic Schroedinger equation. Here we begin important tests of the relativistic sixteen component wave function solutions obtained in a recent work on meson spectroscopy, extending a method developed previously for positronium decay into two photons. Preliminary to this we examine the positronium decay in the 3P_{0,2} states as well as the 1S_0. The two-gamma quarkonium decays that we investigate are for the \eta_{c}, \eta_{c}^{\prime}, \chi_{c0}, \chi_{c2}, \pi^{0}, \pi_{2}, a_{2}, and f_{2}^{\prime} mesons. Our results for the four charmonium states compare well with those from other quark models and show the particular importance of including all components of the wave function as well as strong and CM energy dependent potential effects on the norm and amplitude. The results for the \pi^{0}, although off the experimental rate by 15%, is much closer than the usual expectations from a potential model. We conclude that the Two-Body Dirac equations lead to wave functions which provide good descriptions of the two-gamma decay amplitude and can be used with some confidence for other purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.