Abstract

Monte Carlo simulations are used to evaluate the Modified Sigmund Model of Sputtering. Simulations were carried out for a range of ion incidence angles and surface curvatures for different ion species, ion energies, and target materials. Sputter yields, moments of erosive crater functions, and the fraction of backscattered energy were determined. In accordance with the Modified Sigmund Model of Sputtering, we find that for sufficiently large incidence angles θ the curvature dependence of the erosion crater function tends to destabilize the solid surface along the projected direction of the incident ions. For the perpendicular direction, however, the curvature dependence always leads to a stabilizing contribution. The simulation results also show that, for larger values of θ, a significant fraction of the ions is backscattered, carrying off a substantial amount of the incident ion energy. This provides support for the basic idea behind the Modified Sigmund Model of Sputtering: that the incidence angle θ should be replaced by a larger angle Ψ to account for the reduced energy that is deposited in the solid for larger values of θ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.