Abstract

The molecular structures and electron affinities of the R – S / R – S -( R = CH 3, C 2 H 5, n- C 3 H 7, n- C 4 H 9, n- C 5 H 11, i- C 3 H 7, i- C 4 H 9, t- C 4 H 9) species have been studied using 17 pure and hybrid density functionals (five generalized gradient approximation (GGA) methods, six hybrid GGAs, one meta GGA method and five hybrid meta GGAs). The basis set used in this work is of double-ζ plus polarization quality with additional diffuse s- and p-type functions, denoted by DZP++. The geometries are fully optimized with each DFT method and discussed. Harmonic vibrational frequencies are found to be within 3.5% of available experimental values for most functionals. Three different types of the neutral-anion energy separations have been presented. The theoretical electron affinities of alkylthio radicals are in good agreement with the experiment data. The M06 method is very good for the adiabatic electron affinity calculations, and the average absolute error is 0.0439 eV. The HCTH method performs better for EA prediction. The M06-HF, mPWPW91, VSXC and B98 are also reasonable. The most reliable adiabatic electron affinities are predicted to be 1.864 eV ( CH 3 S ), 1.946 eV ( C 2 H 5 S ), 1.959 eV (n- C 3 H 7 S ), 1.970 eV (n- C 4 H 9 S ), 1.982 eV (n- C 5 H 11 S ), 2.053 eV (i- C 3 H 7 S ), 1.991 eV (i- C 4 H 9 S ) and 2.100 eV (t- C 4 H 9 S ) at the M06/DZP++ level of theory, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call