Abstract

We analyze the ability of galaxy and CMB lensing surveys to constrain massive neutrinos and new models of dark radiation. We present a Fisher forecast analysis for neutrino mass constraints with the LSST galaxy survey and the CMB S4 survey. A joint analysis of the three galaxy and shear 2-point functions from LSST, along with key systematics parameters and Planck priors, can constrain the neutrino masses to ∑ mν = 0.041 eV at 1-σ level, comparable to constraints expected from Stage 4 CMB lensing. If low redshift information from upcoming spectroscopic surveys like DESI is included, the constraint becomes ∑ mν = 0.032 eV . These constraints are derived having marginalized over the number of relativistic species (Neff), which is somewhat degenerate with the neutrino mass. We also explore the gain by combining LSST and CMB S4, that is, using the five relevant auto- and cross-correlations of the two datasets. We conclude that advances in modeling the nonlinear regime and the measurements of other parameters are required to ensure a neutrino mass detection. Using the same datasets, we explore the ability of LSST-era surveys to test “nonstandard” models with dark radiation. We find that if evidence for dark radiation is found from Neff measurements, the mass of the dark radiation candidate can be measured at a 1-σ level of 0.162 eV for fermionic dark radiation, and 0.137 eV for bosonic dark radiation, for Δ Neff = 0.15. We also find that the NNaturalness model of Arkani-Hamed et al. [1], with extra light degrees of freedom, has a sub-percent effect on the power spectrum: even more ambitious surveys than the ones considered here will be needed to test such models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.