Abstract
Many time series in diverse fields have been found to exhibit long memory. This paper analyzes the behaviour of some of the most used tests of long memory: the R/S analysis, the modified R/S, the Geweke and Porter-Hudak (GPH) test and the detrended fluctuation analysis (DFA). Some of these tests exhibit size distortions in small samples. It is well known that the bootstrap procedure may correct this fact. Here I examine the size and power of those tests for finite samples and different distributions, such as the normal, uniform, and lognormal. In the short-memory processes such as AR, MA and ARCH and long memory ones such as ARFIMA, p-values are calculated using the post-blackening moving-block bootstrap. The Monte Carlo study suggests that the bootstrap critical values perform better. The results are applied to financial return time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.