Abstract

Quasi-static tests for ten pieces of the unbonded steel plate brace encased in reinforced concrete panel, which is referred to as the panel buckling-restrained brace (panel BRB), have been carried out. The effects of some constructional details, such as unbonded material, clearance between the panel and the brace, configuration of the steel bar and the edge reinforcement, effective width of the panel, etc., on the hysteretic behavior of the panel BRBs are examined. The results indicate that the panel BRBs with evener unbonded materials, smaller clearance and additional steel bars and ties along the encased braces exhibit better ductility and energy dissipation capacity than the others. The brace under compression appears to exhibit small amplitude flexural buckling with multiple waves, and its ultimate axial force exceeds its yield load capacity significantly due to strain hardening and frictional action. All specimens of panel BRB exhibit a stable performance under the quasi-static loading until local failure of the panel occurs by either flexure or punching shear. The results also reveal that, with the same construction details mentioned above, the hysteretic behavior of the specimens with the effective width panel almost matches that of the specimens with normal weight concrete panel, however, the former kind of panel BRB would be advantageous in the aseismic performance of the buildings because of its lighter weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.