Abstract

In order to reduce seismic responses of structures, low-yield point steel has been used for dampers due to its excellent energy dissipation capacity. However, few researches about the low-yield point steel dampers have been conducted in China so far. This paper mainly presents an experimental study on two buckling-restrained braces (BRBs) which take an in-line steel plate as the core and a double-web wide flange steel member as the outer unit. Low-yield point steel LY100 is taken as the core material and conventional steel SN400 is taken as the outer material. Uniaxial cyclic loading tests of two low-yield point steel BRBs (LYS-BRB) were conducted to investigate their hysteretic behavior and energy dissipation capacity. The two LYS-BRBs yielded at rather small displacement and their accumulated plastic deformation ratios reached 1639 and 1437, respectively. Significant strain-hardening behavior can be observed in the hysteresis curves of LYS-BRBs and the maximum cyclic stress reached 3.85 times the yield stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call