Abstract

An adaptation to a data reduction method is outlined for determining backscatter coefficients, eta, when broad-bandwidth pulses are employed. The accuracy of these eta values is assessed with well-characterized phantoms, for which backscatter coefficients based on their physical properties have been independently calculated. One phantom produces Rayleigh-like scattering, where the backscatter coefficient varies smoothly with frequency over the analysis bandwidth. A second phantom exhibits local maxima and minima in the scattering function versus frequency due to the presence of millimeter-sized graphite gel spheres in a gel background. The method was found to produce accurate results using time gate durations as small as 2 mus, although better accuracy is obtained for longer gate durations, particularly when the sample exhibits resonance peaks in backscatter versus frequency. Use of a Hamming window in place of a rectangular window extends the accuracy near the upper and lower limits of the frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.