Abstract

Using linear invariants for various models of nucleotide substitution, we developed test statistics for examining the applicability of a specific model to a given dataset in phylogenetic inference. The models examined are those developed by Jukes and Cantor (1969), Kimura (1980), Tajima and Nei (1984), Hasegawa et al. (1985), Tamura (1992), Tamura and Nei (1993), and a new model called the eight-parameter model. The first six models are special cases of the last model. The test statistics developed are independent of evolutionary time and phylogeny, although the variances of the statistics contain phylogenetic information. Therefore, these statistics can be used before a phylogenetic tree is estimated. Our objective is to find the simplest model that is applicable to a given dataset, keeping in mind that a simple model usually gives an estimate of evolutionary distance (number of nucleotide substitutions per site) with a smaller variance than a complicated model when the simple model is correct. We have also developed a statistical test of the homogeneity of nucleotide frequencies of a sample of several sequences that takes into account possible phylogenetic correlations. This test is used to examine the stationarity in time of the base frequencies in the sample. For Hasegawa et al.'s and the eight-parameter models, analytical formulas for estimating evolutionary distances are presented. Application of the above tests to several sets of real data has shown that the assumption of stationarity of base composition is usually acceptable when the sequences studied are closely related but otherwise it is rejected. Similarly, the simple models of nucleotide substitution are almost always rejected when actual genes are distantly related and/or the total number of nucleotides examined is large.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.