Abstract
AbstractWe propose methods for detecting structural changes in time series with discrete‐valued observations. The detector statistics come in familiar L2‐type formulations incorporating the empirical probability generating function. Special emphasis is given to the popular models of integer autoregression and Poisson autoregression. For both models, we study mainly structural changes due to a change in distribution, but we also comment for the classical problem of parameter change. The asymptotic properties of the proposed test statistics are studied under the null hypothesis as well as under alternatives. A Monte Carlo power study on bootstrap versions of the new methods is also included along with a real data example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.