Abstract

<p>Germination test is used to assess the physiological quality of seeds; however, since it is carried out under ideal conditions, this test has not been shown sufficient for this purpose. Instead, it is possible to use vigor tests, although the lack of standardized methodologies has reduced their applicability and reproducibility. Thus, this study aimed to develop methodologies for conducting tests of germination, accelerated aging, and electrical conductivity for the evaluation of the physiological quality of pitaya seeds. For this purpose, seeds from ripe <em>Hylocereus undatus </em>fruits were used. A completely randomized experimental design was used with four replications. The physiological quality of the seeds was assessed using germination, accelerated aging, and electrical conductivity tests, and the speed of germination index (SGI) and mean germination time (MGT) were determined for both the germination test and accelerated aging test. For the statistical analysis, we performed regression model adjustments and calculated the Pearson correlation coefficient (p < 0.05). The germination test for <em>H. undatus </em>seeds can be performed at 25 °C, with the aim of reaching the highest SGI and lowest MGT values. The accelerated aging test can be conducted at 43 °C for 48 h, because combining these factors favors the expression of seed vigor, allowing seeds to achieve the maximum SGI and minimum MGT, while reducing the time of the assay. The electrical conductivity test can be performed using 25 seeds at a temperature of 30 °C and a water volume of 10 mL, since under these conditions there is less interference from external factors on the leachate content of the solution.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.