Abstract

The age-related decrease in serum T levels is associated with impairments in food intake and weight regulation and alterations in brain peptides that regulate energy balance. To test the hypothesis that reduced T levels contribute to altered hypothalamic cocaine-amphetamine-regulated transcript (CART) and NPY gene expression, the mRNA content of these neuropeptides was measured by in situ hybridization in sham-operated (intact), castrated, and T-replaced castrated young and old male Brown Norway rats. T levels in T-replaced young and old rats were similar to those in intact young animals. Compared with castrated rats, arcuate nucleus CART mRNA was lower and NPY mRNA was higher in both young and old T-replaced castrated animals, suggesting reciprocal regulation of these peptides by T; these T-induced changes were localized primarily in the rostral arcuate and were markedly attenuated in old animals. Compared with intact animals, paraventricular nucleus CART mRNA was lower in castrated animals and similar in T-replaced young and old rats. We conclude that hypothalamic CART and NPY neurons remain responsive to T regulation in old rats, albeit less so than in young animals, suggesting that the age-related reduction of T contributes in part to altered brain neuropeptide gene expression favoring anorexia and wasting with aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.