Abstract

Alkyl and alk-1-enyl (plasmalogens) ether-linked glycerolipids are prominent components of many mammalian cells; moreover, an acetylated form of an alkyl phospholipid was recently found to possess potent hypotensive, inflammatory and allergic properties. In our studies, preputial glands of mice were selected as a model to investigate the regulation of factors involved in the biosynthesis of ether-linked lipids, since these glands contain high concentrations of ether-linked neutral lipids that are under the influence of hormonal control. We found that a key enzyme in the ether-lipid metabolic pathway, microsomal acyl- CoA reductase that catalyzes the formation of long-chain fatty alcohols (precursor of the O-alkyl chain), was increased 16-fold after injecting testosterone into male, castrated mice. This induction was highly specific, since testosterone did not affect another microsomal enzyme, NADPH-cytochrome c reductase. Based on kinetics of enzyme activity changes, the half-life of acyl-CoA reductase was calculated to be 61–70 h. In addition, the activity of a cytosolic stimulatory protein for the acyl-CoA reductase (but not for a different cytosolic protein, lactate dehydrogenase) was also enhanced in the testosterone-treated, male, castrated mice. These findings indicate that acyl-CoA reductase is an important regulatory enzyme in the reactions that lead to the formation of the ether bond in glycerolipids and that it is modulated through hormonal control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call