Abstract

Testosterone deficiency is commonly associated with obesity, metabolic syndrome, type 2 diabetes and their clinical consequences—hepatic steatosis and atherosclerosis. The testicular feminised mouse (non-functional androgen receptor and low testosterone) develops fatty liver and aortic lipid streaks on a high-fat diet, whereas androgen-replete XY littermate controls do not. Testosterone treatment ameliorates these effects, although the underlying mechanisms remain unknown. We compared the influence of testosterone on the expression of regulatory targets of glucose, cholesterol and lipid metabolism in muscle, liver, abdominal subcutaneous and visceral adipose tissue. Testicular feminised mice displayed significantly reduced GLUT4 in muscle and glycolytic enzymes in muscle, liver and abdominal subcutaneous but not visceral adipose tissue. Lipoprotein lipase required for fatty acid uptake was only reduced in subcutaneous adipose tissue; enzymes of fatty acid synthesis were increased in liver and subcutaneous tissue. Stearoyl-CoA desaturase-1 that catalyses oleic acid synthesis and is associated with insulin resistance was increased in visceral adipose tissue and cholesterol efflux components (ABCA1, apoE) were decreased in subcutaneous and liver tissue. Master regulator nuclear receptors involved in metabolism—Liver X receptor expression was suppressed in all tissues except visceral adipose tissue, whereas PPARγ was lower in abdominal subcutaneous and visceral adipose tissue and PPARα only in abdominal subcutaneous. Testosterone treatment improved the expression (androgen receptor independent) of some targets but not all. These exploratory data suggest that androgen deficiency may reduce the buffering capability for glucose uptake and utilisation in abdominal subcutaneous and muscle and fatty acids in abdominal subcutaneous. This would lead to an overspill and uptake of excess glucose and triglycerides into visceral adipose tissue, liver and arterial walls.

Highlights

  • Evidence suggests that testosterone deficiency in men is an independent cardiovascular risk factor which is associated with obesity, metabolic syndrome (MetS) and type-2 diabetes (T2D) [1, 2]

  • In the present exploratory study, we aim to investigate whether the metabolic protective effects of testosterone act via modulation of the expression of key targets involved in lipid and glucose metabolism in muscle, liver and adipose tissue of cholesterol-fed testicular feminised (Tfm) mice

  • Hepatic G6pdx was elevated in Tfm mice compared to XY mice (p < 0.001) and testosterone treatment showed a trend to reducing this expression in Tfm mice (p = 0.056)

Read more

Summary

Introduction

Evidence suggests that testosterone deficiency in men is an independent cardiovascular risk factor which is associated with obesity, metabolic syndrome (MetS) and type-2 diabetes (T2D) [1, 2]. Androgen deprivation therapy for the treatment of prostate cancer in men, whilst reducing tumour growth, increases the risk of coronary heart disease, diabetes and cardiovascular death, indicating that testosterone deficiency may promote atherosclerosis [8, 9]. Some trials have reported that achieving a normal physiological testosterone concentration through the administration of testosterone replacement therapy (TRT) improves vascular function and risk factors for atherosclerosis, including reducing central adiposity, percentage body fat, fatty liver and insulin resistance, and improving lipid profiles insulin sensitivity and inflammatory profiles [2, 10,11,12,13,14,15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call