Abstract

Erectile dysfunction (ED) is a major health problem affecting a large proportion of the general population. Testosterone also plays a key role in sexual dysfunction. In this study, we found that testosterone can inhibit cavernous fibrosis by affecting the expression of miR-22-3p, providing a new basis for research and treatment of ED. Old and young rats were used to study the effects of testosterone on cavernous fibrosis. Hematoxylin and eosin (HE) and Masson's staining were used to observe the cavernous tissue. A luciferase assay was used to analyze the relationship between the miR-22-3p, TGFβR1, and Galectin-1 signaling pathways. CCK-8 and flow cytometry were used to detect the proliferation and apoptosis rates of cavernosum smooth muscle cells (CSMCs) following testosterone intervention. Immunohistochemical analysis was performed to examine the positive rate of caspase 3 and Ki67. IF was used to analyze the expression of collagen IV, MMP2, and α-SMA. The levels of GnRH, tT, LH, and F-TESTO in old rats increased after testosterone intervention. miR-22-3p inhibits the expression of TGFβR1 and Galectin-1. The protein expression of TGFβR1, Galectin-1, SMAD2, and p-SMAD2 was reduced by testosterone. The expression levels of α-SMA, collagen I, collagen IV, FN, and MMP2 in the cavernous tissues of old rats treated with testosterone were significantly reduced. The levels of caspase 3 and collagen IV decreased, and the levels of MMP2, Ki67, and α-SMA increased. Testosterone and miR-22-3p inhibit CSMC apoptosis and promote cell proliferation. Testosterone promoted the expression of miR-22-3p to interfere with the expression of the cavernous TGFβR1 and Galectin-1 signaling pathways. Testosterone can reduce cavernous fibrosis during the treatment of functional ED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call