Abstract
Rapid detection of anomalous operating conditions within a water distribution network is desirable for the protection of the network against both accidental and malevolent contamination events. In the absence of a suite of in-situ, real-time sensors that can accurately identify a wide range of contaminants, we focus on detecting changes in water quality through analysis of existing data streams from in-situ water quality sensors. Three different change detection algorithms are tested: time series increments, linear filter and multivariate distance. Each of these three algorithms uses previous observations of the water quality to predict future water quality values. Large deviations between the predicted or previously measured values and observed values at future times indicate a change in the expected water quality. The definition of what constitutes a large deviation is quantified by a threshold value applied to the observed differences. Both simulated time series of water quality as well as measured chlorine residual values from two different locations within a distribution network are used as the background water quality values. The simulated time series are created specifically to challenge the change detection algorithms with bimodally distributed water quality values having a square wave and sin wave time series, with and without correlated noise. Additionally, a simulated time series resembling observed water quality time series is created with different levels of variability. The algorithms are tested in two different ways. First, background water quality without any anomalous events are used to test the ability of each algorithm to identify the water quality value at the next time step. Summary statistics on the prediction errors as well as the number of false positive detections quantify the ability of each algorithm to predict the background water quality. The performance of the algorithms with respect to limiting false positives is also compared against a simpler “set point” approach to detecting water quality changes. The second mode of testing employs events in the form of square waves superimposed on top of modeled/measured background water quality data. Three different event strengths are examined and the event detection capabilities of each algorithm are evaluated through the use of receiver operating characteristic (ROC) curves. The area under the ROC curve provides a quantitative basis of comparison across the three algorithms. Results show that the multivariate algorithm produces the lowest prediction errors for all cases of background water quality. A comparison of the number of false positives reported from the change detection algorithms and a set point approach highlights the efficiency of the change detection algorithms. Across all three algorithms, most prediction errors are within one standard deviation of the mean water quality. The event detection results show that the best performing algorithm varies across different background water quality models and simulated event strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.