Abstract

Abstract It has recently been proposed that space–time and gravity may emerge from an underlying microscopic theory. In a de Sitter space–time, such emergent gravity (EG) contains an additional gravitational force due to dark energy, which may explain the mass discrepancies observed in galactic systems without the need of dark matter. For a point mass, EG is equivalent to Modified Newtonian Dynamics (MOND). We show that this equivalence does not hold for finite-size galaxies: There are significant differences between EG and MOND in the inner regions of galaxies. We confront theoretical predictions with the empirical radial acceleration relation (RAR). We find that (i) EG is consistent with the observed RAR only if we substantially decrease the fiducial stellar mass-to-light ratios; the resulting values are in tension with other astronomical estimates; (ii) EG predicts that the residuals around the RAR should correlate with radius; such residual correlation is not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.