Abstract

Severe accident analysis for LMFBR-containments has to consider various phenomena influencing the development of containment loads as pressure and temperatures as well as generation, transport, depletion and release of aerosols and radioactive materials. As most of the different phenomena are linked together their feedback has to be taken into account within the calculation of severe accident consequences. Otherwise no best-estimate results can be assured. Under the sponsorship of the German BMFT the US code CONTAIN is being developed, verified and applied in GRS for future fast breeder reactor concepts. In the first step of verification, the basic calculation models of a containment code have been proven: (i) flow calculation for different flow situations, (ii) heat transfer from and to structures, (iii) coolant evaporation, boiling and condensation, (iv) material properties. In the second step the proof of the interaction of coupled phenomena has been checked. The calculation of integrated containment experiments relating natural convection flow, structure heating and coolant condensation as well as a parallel calculation of results obtained with an other code give detailed information on the applicability of CONTAIN. The actual verification status allows the following conclusion: a caucious analyst experienced in containment accident modelling using the proven parts of CONTAIN will obtain results which have the same accuracy as other well optimized and detailed lumped parameter containment codes can achieve. Further code development, additional verification and international exchange of experience and results will assure an adequate code for the application in safety analyses for LMFBRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call