Abstract

BackgroundConcept inventories (CIs) are commonly used tools for assessing student understanding of scientific and naive ideas, yet the body of empirical evidence supporting the inferences drawn from CI scores is often limited in scope and remains deeply rooted in Classical Test Theory. The Genetic Drift Inventory (GeDI) is a relatively new CI designed for use in diagnosing undergraduate students’ conceptual understanding of genetic drift. This study seeks to expand the sources of evidence examining validity and reliability inferences produced by GeDI scores. Specifically, our research focused on: (1) GeDI instrument and item properties as revealed by Rasch modeling, (2) item order effects on response patterns, and (3) generalization to a new geographic sample.MethodsA sample of 336 advanced undergraduate biology majors completed four equivalent versions of the GeDI. Rasch analysis was used to examine instrument dimensionality, item fit properties, person and item reliability, and alignment of item difficulty with person ability. To investigate whether the presentation order of GeDI item suites influenced overall student performance, scores were compared from randomly assigned, equivalent test versions varying in item-suite presentation order. Scores from this sample were also compared with scores from similar but geographically distinct samples to examine generalizability of score patterns.ResultsRasch analysis indicated that the GeDI was unidimensional, with good fit to the Rasch model. Items had high reliability and were well matched to the ability of the sample. Person reliability was low. Rotating the GeDI’s item suites had no significant impact on scores, suggesting each suite functioned independently. Scores from our new sample from the NE United States were comparable to those from other geographic regions and provide evidence in support of score generalizability. Overall, most instrument features were robust. Suggestions for improvement include: (1) incorporation of additional items to differentiate high-ability persons and improve person reliability, and (2) re-examination of items with redundant or low difficulty levels.ConclusionsRasch analyses of the GEDI instrument and item order effects expand the range and quality of evidence in support of validity claims and illustrate changes that are likely to improve the quality of this (and other) evolution education instruments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call