Abstract

We evaluate the success of linear tidal-torque theory (TTT) in predicting galactic-halo spin using a cosmological N-body simulation with thousands of well-resolved haloes. The protohaloes are identified by tracing today's haloes back to the initial conditions. The TTT predictions for the protohaloes match, on average, the spin amplitudes of the virialized haloes of today, if linear growth is assumed until ∼t0/3, or 55–70 per cent of the halo effective turn-around time. This makes it a useful qualitative tool for understanding certain average properties of galaxies, such as total spin and angular momentum distribution within haloes, but with a random scatter of the order of the signal itself. Non-linear changes in spin direction cause a mean error of ∼50° in the TTT prediction at t0, such that the linear spatial correlations of spins on scales ≥1 h−1 Mpc are significantly weakened by non-linear effects. This questions the usefulness of TTT for predicting intrinsic alignments in the context of gravitational lensing. We find that the standard approximations made in TTT, including a second-order expansion of the Zel'dovich potential and a smoothing of the tidal field, provide close-to-optimal results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.