Abstract

We develop an approach to analyze time-course microarray data which are obtained from a single sample at multiple time points and to identify which genes are cell-cycle regulated. Since some genes have similar gene expression patterns, to reduce the amount of hypothesis testing, we first perform a clustering analysis to group genes into classes with similar cell-cycle patterns, including a class with no cell-cycle phenomena at all. Then we build a statistical model and an inference function assuming that genes within a cluster share the same mean model. A varying coefficient nonparametric approach is employed to be more flexible to fit the time-course data. In order to incorporate the correlation of longitudinal measurements, the quadratic inference function method is applied to obtain more efficient estimators and more powerful tests. Furthermore, this method allows us to perform chi-squared tests to determine whether certain genes are cell-cycle regulated. A data example on cell-cycle microarray data as well as simulations are illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.