Abstract

One of the key issues related to guaranteeing synchronous message deadlines in a timed token network (such as fiber distributed data interface) where the timed token medium access control protocol is used is the schedulability test of synchronous traffic (i.e., testing whether or not all synchronous messages can be transmitted before their deadlines, under a given setting of network parameters). Much work has been done on how to assign network parameters appropriately in order to guarantee timely transmission of synchronous traffic. As a result quite a few synchronous bandwidth allocation schemes and some good guidelines on selection of the target token rotation time have been proposed. In contrast, limited research has been conducted on how to effectively test whether or not given network parameters can guarantee timely transmission of all synchronous messages (of a considered synchronous message set) before their deadlines. The previous testing methods for synchronous message schedulability only provide a sufficient (but not necessary) test and therefore fail to always keep effective for any synchronous message set considered. In this paper, we propose two testing methods for determining the schedulability of a synchronous message set with message deadlines no longer than periods. The proposed tests perform better than any previous test in the sense that they are both sufficient and necessary. Some numerical examples are given to compare different testing methods, all of which have demonstrated the superiority of the proposed tests to other existing testing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.