Abstract
In a recent article, Meylan and Griffiths (Meylan & Griffiths, 2021, henceforth, M&G) focus their attention on the significant methodological challenges that can arise when using large-scale linguistic corpora. To this end, M&G revisit a well-known result of Piantadosi, Tily, and Gibson (2011, henceforth, PT&G) who argue that average information content is a better predictor of word length than word frequency. We applaud M&G who conducted a very important study that should be read by any researcher interested in working with large-scale corpora. The fact that M&G mostly failed to find clear evidence in favor of PT&G's main finding motivated us to test PT&G's idea on a subset of the largest archive of German language texts designed for linguistic research, the German Reference Corpus consisting of ∼43 billion words. We only find very little support for the primary data point reported by PT&G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.