Abstract

Peatland surface wetness records provide long Holocene palaeoclimate reconstructions at 10 1–10 2 year resolution. They reflect changes in water balance but the relative strength of precipitation and temperature signals are not known. In common with other non-annually resolved records, there has been no testing of the reconstructions against instrumental climate data. In this paper high-resolution records of palaeohydrological change reconstructed from testate amoebae analysis are used to examine critically the relationships between reconstructed water table change, instrumental water table and climate data. A 200-year record of reconstructed water table from northern England shows that the strongest control on reconstructed mean annual water table change is summer precipitation, with summer temperature becoming more important over longer time periods. A 50-year record from Estonia shows that both measured and reconstructed water table records are strongly correlated with summer precipitation. Summer temperature is also correlated with reconstructed water table. We conclude that peatland surface wetness records should be interpreted as primarily reflecting summer precipitation variability, with summer temperature increasingly important in more continental settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call