Abstract

In recent years, the study of quantum effects near the event horizon of a black hole (BH) has attracted extensive attention. It has become one of the important methods to explore BH quantum properties using the related properties of a quantum deformed BH. In this work, we study the effect of a quantum deformed BH on the BH shadow in two-dimensional Dilaton gravity. In this model, quantum effects are reflected by the quantum correction parameter m. By calculation, we find that: (1) the shape of the shadow boundary of a rotating BH is determined by the BH spin a, the quantum correction parameter m, and the BH type parameter n; (2) when the spin , the shape of the BH shadow is a perfect circle; when , the shape is distorted; if the quantum correction parameter , their shapes reduce to the cases of a Schwarzschild BH and Kerr BH, respectively; (3) the degree of distortion of the BH shadow is different for various quantum correction parameters m; with an increase in the parameter m, the boundary of the BH shadow expands; (4) the size of the BH shadow varies greatly with respect to various quantum deformed BHs (n), and the change in BH shadow shape caused by parameter n is similar to that caused by parameter m, which indicates that there is a "degenerate phenomenon" between the two parameters. Because the value of m in actual physics should be very small, the current observations of the event horizon telescope (EHT) cannot distinguish quantum effects from the BH shadow. In future BH shadow measurements, it will be possible to distinguish quantum deformed BHs, which will help to better understand the quantum effects of BHs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.