Abstract

BackgroundTo report about enhancements introduced in the GLAaS calibration method to convert raw portal imaging images into absolute dose matrices and to report about application of GLAaS to routine radiation tests for linac quality assurance procedures programmes.MethodsTwo characteristic effects limiting the general applicability of portal imaging based dosimetry are the over-flattening of images (eliminating the "horns" and "holes" in the beam profiles induced by the presence of flattening filters) and the excess of backscattered radiation originated by the detector robotic arm supports. These two effects were corrected for in the new version of GLAaS formalism and results are presented to prove the improvements for different beams, detectors and support arms. GLAaS was also tested for independence from dose rate (fundamental to measure dynamic wedges).With the new corrections, it is possible to use GLAaS to perform standard tasks of linac quality assurance. Data were acquired to analyse open and wedged fields (mechanical and dynamic) in terms of output factors, MU/Gy, wedge factors, profile penumbrae, symmetry and homogeneity. In addition also 2D Gamma Evaluation was applied to measurement to expand the standard QA methods. GLAaS based data were compared against calculations on the treatment planning system (the Varian Eclipse) and against ion chamber measurements as consolidated benchmark. Measurements were performed mostly on 6 MV beams from Varian linacs. Detectors were the PV-as500/IAS2 and the PV-as1000/IAS3 equipped with either the robotic R- or Exact- arms.ResultsCorrections for flattening filter and arm backscattering were successfully tested. Percentage difference between PV-GLAaS measurements and Eclipse calculations relative doses at the 80% of the field size, for square and rectangular fields larger than 5 × 5 cm2 showed a maximum range variation of -1.4%, + 1.7% with a mean variation of <0.5%. For output factors, average percentage difference between GLAaS and Eclipse (or ion chamber) data was -0.4 ± 0.7 (-0.2 ± 0.4) respectively on square fields. Minimum, maximum and average percentage difference between GLAaS and Eclipse (or ion chamber) data in the flattened field region were: 0.1 ± 1.0, 0.7 ± 0.8, 0.1 ± 0.4 (1.0 ± 1.4, -0.3 ± 0.2, -0.1 ± 0.2) respectively. Similar minimal deviations were observed for flatness and symmetry.For Dynamic wedges, percentage difference of MU/Gy between GLAaS and Eclipse (or ion chamber) was: -1.1 ± 1.6 (0.4 ± 0.7). Minimum, maximum and average percentage difference between GLAaS and Eclipse (or ion chamber) data in the flattened field region were: 0.4 ± 1.6, -1.5 ± 1.8, -0.1 ± 0.3 (-2.2 ± 2.3, 2.3 ± 1.2, 0.8 ± 0.3) respectively.For mechanical wedges differences of transmission factors were <1.6% (Eclipse) and <1.1% (ion chamber) for all wedges. Minimum, maximum and average percentage difference between GLAaS and Eclipse (or ion chamber) data in the flattened field region were: -1.3 ± 0.7, -0.7 ± 0.7, -0.2 ± 0.2 (-0.8 ± 0.8, 0.7 ± 1.1, 0.2 ± 0.3) respectively.ConclusionGLAaS includes now efficient methods to correct for missing "horns" and "holes" induced by flattening filter in the beam and to compensate for excessive backscattering from the support arm. These enhancements allowed to use GLAaS based dosimetric measurement to perform standard tasks of Linac quality assurance with reliable and consistent results. This fast method could be applied to routine practice being also fast in usage and because it allows the introduction of new analysis tools in routine QA by means, e.g., of the Gamma Index analysis.

Highlights

  • To report about enhancements introduced in the GLAaS calibration method to convert raw portal imaging images into absolute dose matrices and to report about application of GLAaS to routine radiation tests for linac quality assurance procedures programmes

  • Many efforts have been put in develop methods to use these detectors for pre-treatment IMRT verification because of the possibility to reduce dramatically the time needed to perform the quality assurance processes compared to other devices, normally too time consuming

  • Aim of the present study is to report about recent improvements to the basic GLAaS to better account for the general weak points mentioned above: a correction method to take into account the variation of off-axis ratio mostly determined by the flattening filter (FF) and a correction for the different arm backscattering when different field sizes are applied

Read more

Summary

Introduction

To report about enhancements introduced in the GLAaS calibration method to convert raw portal imaging images into absolute dose matrices and to report about application of GLAaS to routine radiation tests for linac quality assurance procedures programmes. Electronic portal imagers based on amorphous silicon flat panels are widely available in clinics and of natural interest for dosimetric purposes due to their intrinsic features. One of the key factors, for dosimetric purposes, of aSi detectors is certainly their linear response in dose and dose rate, feature that allows a theoretically simple calibration process and a direct usage as dosimeters in many clinical and physical applications. That often blocked a wide dosimetric usage of aSi's is that, in most of the cases, these detectors are part of the electronic portal imaging systems attached to linear accelerators and, in order to produce better image quality on the patients, basic detector calibration includes corrections for dark current and flood field aiming to generate an over flattened image from open fields. To complicate the dosimetric usage of aSi detectors there is the need to properly determine their response (in terms of linearity slope) at different field sizes and different energies and spectra, e.g. for primary or transmitted radiation (through multileaf collimators or through wedges)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call