Abstract

The success obtained by Statistical Pattern Recognition in many disciplines is certainly related to the quality and availability of many data, normally distributed. However, in other disciplines, the data sets consist of few measurements, often binned, correlated, and not normally distributed. Usually, we do not even know which features have an influence on the process. The main goal of this paper is to evaluate the performance of some nonparametric Pattern Recognition algorithms when applied to such data. Finally we show the results of the application of the four nonparametric statistical pattern recognition techniques to real volcanological data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.