Abstract

Nuclear many-body theory is based on the tenet that nuclear systems can be accurately described as collections of point-like particles. This picture, while providing a remarkably accurate explanation of a wealth of measured properties of atomic nuclei, is bound to break down in the high-density regime, in which degrees of freedom other than protons and neutrons are expected to come into play. Valuable information on the validity of the description of dense nuclear matter in terms of nucleons, needed to firmly establish its limit of applicability, can be obtained from electron–nucleus scattering data at large momentum transfer and low energy transfer. The emergence of y-scaling in this kinematic region, unambiguously showing that the beam particles couple to high-momentum nucleons belonging to strongly correlated pairs, indicates that at densities as large as five times nuclear density—typical of the neutron star interior—nuclear matter largely behaves as a collection of nucleons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call