Abstract

According to the no-hair theorem, astrophysical black holes are uniquely described by their mass and spin. In this paper, we review a new framework for testing the no-hair hypothesis with observations in the electromagnetic spectrum. The approach is formulated in terms of a Kerr-like spacetime containing a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation from the Kerr metric quadrupole has to be zero. We show how upcoming VLBI imaging observations of Sgr A∗ as well as spectroscopic observations of iron lines from accreting black holes with IXO may lead to the first astrophysical test of the no-hair theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.