Abstract

The structural information in high-dimensional transposable data allows us to write the data recorded for each subject in a matrix such that both the rows and the columns correspond to variables of interest. One important problem is to test the null hypothesis that the mean matrix has a particular structure without ignoring the dependence structure among and/or between the row and column variables. To address this, we develop a generic and computationally inexpensive nonparametric testing procedure to assess the hypothesis that, in each predefined subset of columns (rows), the column (row) mean vector remains constant. In simulation studies, the proposed testing procedure seems to have good performance and, unlike simple practical approaches, it preserves the nominal size and remains powerful even if the row and/or column variables are not independent. Finally, we illustrate the use of the proposed methodology via two empirical examples from gene expression microarrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.