Abstract

With the Markov Chain Monte Carlo (MCMC) method, we constrain an interactive dark energy model by combing the up-to-date observational data of Hubble parameter H(z) with the 7-year baryon acoustic oscillation (BAO) data, and the cosmic microwave background (CMB) data observed by the Planck satellite. Under the joint constraint of the three kinds of data, the best-fit values of the model parameters and their 1-σ errors are obtained as follows: the energy density Ωm=0.266-0.028+0.028(1σ), the interaction factor γ=0.090-0.098+0.100(1σ), the parameter of state equation of dark matter wX=-1.307-0.269+0.263(1σ), and the Hubble Constant H0=7420-4.56+4.66(1σ), where the coupling parameter γ > 0 means that the energy is transferred from dark matter to dark energy, and the coincidence problem in the Lambda-Cold Dark Matter (ΛCDM) model is slightly alleviated in the 1σ range. For comparisons, we constrain the same model with the BAO+CMB observations and H(z) data separately. The results are as follows: (1) The H(z) data could put stricter constraint on the parameter γ than the BAO+CMB observations. (2) The ΛCDM model is best fitted, and the coupling parameter γ is correlated with parameters Ωm and H0. (3) The inconsistency of the constraint results of H0 between the local distance ladder measurements and the Planck observations can be alleviated after taking account of the interaction between dark energy and dark matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.