Abstract

Imperfect autophagic degradation of oxidatively damaged macromolecules and organelles (so-called biological "garbage") is considered an important contributor to ageing and consequent death of postmitotic (non-dividing) cells, such as neurons and cardiac myocytes. In contrast, proliferating cells apparently escape senescence by a continuous dilution and repair of damaged structures during division. Postmitotic ageing can be mimicked and studied in cultures of potentially dividing cells if their mitotic activity is inhibited. To test the "garbage accumulation" theory of ageing, we compared survival of density-dependent growth-arrested (confluent) and proliferating human fibroblasts and astrocytes following inhibition of autophagic sequestration with 3-methyladenine (3MA). Exposure of confluent fibroblast cultures to 3MA for two weeks resulted in a significantly increased proportion of dying cells compared to both untreated confluent cultures and dividing cells with 3MA-inhibited autophagy. Similar results were obtained when autophagic degradation was suppressed by the protease inhibitor leupeptin. In 3MA- or leupeptin-exposed cultures, dying cells were overloaded with undegraded autofluorescent material. The results support a key role of biological lysosomal "garbage" accumulation in the triggering of ageing and death of postmitotic cells, as well as the anti-ageing role of cell division.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.