Abstract
The integration of photovoltaic technologies within the agricultural framework, known as agrivoltaics, emerges as a promising and sustainable solution to meet the growing global demands for energy and food production. This innovative technology enables the simultaneous utilization of sunlight for both photovoltaics (PV) and photosynthesis. A key challenge in agrivoltaic research involves identifying technologies applicable to a wide range of plant species and diverse geographic regions. To address this challenge, we adopt a multi-experimental and multi-species approach to assess the viability of semi-transparent, spectrally selective thin-film silicon PV technology. Our findings demonstrate compatibility with crop production in controlled environments for both plants and algae. Notably, selective thin-film PV exhibits the potential to enhance crop yields and serves as a photo-protectant. We observe that plant and algal growth increases beneath the selective PV film when supplemented with appropriate diffuse light in the growth environment. Conversely, in situations where light intensity exceeds optimal levels for plant growth, the selective PV film provides a photo-protective effect. These results suggest potential supplementary benefits of employing this technology in regions characterized by excessive light irradiation, where it can contribute to healthy plant growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.