Abstract

In this work, the spectra of some even–even isotopes are studied by selecting core-cluster decomposition of the parent nucleus. The considered nuclei lie in the rare-earth and the transition metal regions. The Schrödinger equation can be solved using Bohr–Sommerfeld relation and the modified Woods–Saxon beside Coulomb potentials to reproduce the spectra of these isotopes with mass number [Formula: see text]. The theoretical calculations of the excitation energies of the ground state rotational band are compared to the experimental data. The cluster model calculations show a good agreement with the experimental data for the transitional and rotational nuclei more than the vibrational nuclei. Some negative parity bands of the chosen nuclei are studied. The core-cluster charge products are correlated with the transition probability [Formula: see text].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call