Abstract

In this paper, a feasibility of anelastic approach for numerical weather prediction (NWP) is examined. The study concerns the anelastic nonhydrostatic model EULAG as a prospective candidate for the new dynamical core of a high-resolution NWP model. Such an application requires a series of benchmark tests to be performed. The study presents the results of dry idealized two-dimensional linear and non-linear tests. They include evolution of cold and warm density currents in neutrally stratified atmosphere, inertia-gravity waves in short and long channels, as well as mountain gravity waves for a set of different flow regimes. Detailed comparison of the results with the reference solutions, based mainly on the results of compressible models, indicates a high level of conformity for all of the experiments. It verifies the anelastic approach as strongly consistent with the compressible one for a broad class of atmospheric problems. It also corroborates the robustness of EULAG numerics, an essential requirement of dynamical core of NWP model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.