Abstract

The "adaptive sterilization hypothesis" argues that the tendency of sexually transmitted infections (STIs) to cause infertility likely reflects an evolutionary adaptation of these pathogens. For example, some STIs can lead to bilateral occlusions of the oviducts and sterile matings. Cycling females that do not spend time gestating and lactating are ready to mate sooner than fertile females, and therefore, likely to mate more frequently and possibly more promiscuously. These sexual activities are associated with enhanced transmissibility of STIs, and tubal occlusion is a proximate mechanism by which STIs can increase fitness. Our principal objectives were to determine whether female mice inoculated with Chlamydia muridarum mate more frequently than mice inoculated with sterile saline and to test the hypothesis that tubal occlusion following C. muridarum infection modulates mating behavior in a manner that might increase transmissibility of Chlamydia. Similar to C. trachomatis infections in human females, C. muridarum can ascend the reproductive tract of mice, damage and occlude the oviducts, and cause infertility. However, ovarian function and mating activity are maintained following tubal occlusion. Twenty C57Bl/6 mice with regular estrous cycles were given intra-vaginal inocula of C. muridarum and 32 days later paired with a male for 90 days. Nine saline-treated females served as controls. Three Chlamydia-inoculated females were rendered infertile due to bilateral oviductal damage and mated 8 (±0.0) times. Control females mated on average 4.6 (±0.3) times, and 17 Chlamydia-inoculated fertile females, including six females with only a single oviduct occluded, mated on average 4.7 (±0.2) times. Chlamydia-inoculated fertile females with unilateral oviductal damage had significantly smaller average litter sizes as compared to females inoculated with saline. Females with unilateral tubal occlusion also tended to wean fewer pups than saline controls over the course of 90 days. Female mice with Chlamydia-induced tubal infertility mated more frequently (approximately every 11 d) than did fertile females (approximately every 20 d), which is consistent with the adaptive sterilization hypothesis. To determine whether Chlamydia-induced sterilization is truly adaptive, future studies will need to demonstrate increased sexual transmissibility, and possibly increased promiscuity, within populations of freely breeding mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call