Abstract

A warmer climate may potentially have a strong effect on the health status of European oak forests by weakening oak trees and facilitating mass reproduction of wood boring insects. We did a laboratory experiment in Slovakia to study the response of major pest beetles of oak and their parasitoids to different temperature regimes as background for predicting climatic effects and improving management tools of European oak forests. With higher temperatures the most important oak pest Scolytus intricatus emerged much earlier, which indicate that completion of a second generation and increased damage further north in European oak forests may be possible. Lower temperatures gave longer larval galleries and more offspring per parents but still lower beetle production due to semivoltine life cycle. For buprestids and longhorn beetles warmer temperatures resulted in more emerging offspring and a shift towards earlier emergence in the same season, but no emergence in the first season indicated that a change to univoltine populations is not likely. Reduced development success of parasitoids at the highest temperatures (25/30 °C) indicates a loss of population regulation for pest beetle populations. A warmer climate may lead to invasion of other population-regulating parasitoids, but also new serious pest may invade. With expected temperature increases it is recommended to use trap trees both in April and in June, and trap trees should be removed within 2 months instead 1 year as described in the current standard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call