Abstract
The covariance matrices are essential quantities in econometric and statistical applications including portfolio allocation, asset pricing and factor analysis. Testing the entire covariance under high dimensionality endures large variability and causes a dilution of the signal-to-noise ratio and hence a reduction in the power. We consider a more powerful test procedure that focuses on testing along the super-diagonals of the high dimensional covariance matrix, which can infer more accurately on the structure of the covariance. We show that the test is powerful in detecting sparse signals and parametric structures in the covariance. The properties of the test are demonstrated by theoretical analyses, simulation and empirical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.