Abstract
The family of density power divergences is an useful class which generates robust parameter estimates with high efficiency. None of these divergences require any non-parametric density estimate to carry out the inference procedure. However, these divergences have so far not been used effectively in robust testing of hypotheses. In this paper, we develop tests of hypotheses based on this family of divergences. The asymptotic variances of the estimators are generally different from the inverse of the Fisher information matrix, so that the usual drop-in-divergence type statistics do not lead to standard Chi-square limits. It is shown that the alternative test statistics proposed herein have asymptotic limits which are described by linear combinations of Chi-square statistics. Extensive simulation results are presented to substantiate the theory developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.